英語演講 學英語,練聽力,上聽力課堂! 注冊 登錄
> 英語演講 > 英語演講mp3 > TED音頻 >  第68篇

演講MP3+雙語文稿:為什么真正的5G還沒來?竟然跟化學研究有關

所屬教程:TED音頻

瀏覽:

2022年03月27日

手機版
掃描二維碼方便學習和分享
https://online2.tingclass.net/lesson/shi0529/10000/10387/tedyp68.mp3
https://image.tingclass.net/statics/js/2012

聽力課堂TED音頻欄目主要包括TED演講的音頻MP3及中英雙語文稿,供各位英語愛好者學習使用。本文主要內容為演講MP3+雙語文稿:為什么真正的5G還沒來?竟然跟化學研究有關,希望你會喜歡!

【演講人及介紹】Cathy Mulzer

有想過你的智能手機是怎么工作的嗎?讓我們和科學家 Cathy Mulzer 一起開啟一段原子級別的旅程。她揭露了我們高性能裝置的每一個部分的存在都要感謝化學家——而不是我們每個人想到的硅谷企業(yè)家。就像她提到的:“化學是電子通訊技術的幕后英雄?!?/p>

【演講主題】智能手機的工作原理

【演講文稿-中英文】

翻譯者 Ivana Korom 校對 Joanna Pietrulewicz

00:13

When I waltzed off to high school with my new Nokia phone, I thought I just had the new, coolest replacement for my old pink princess walkie-talkie. Except now, my friends and I could text or talk to each other wherever we were, instead of pretending, when we were running around each other's backyards. Now, I'll be honest. Back then, I didn't think a lot about how these devices were made. They tended to show up on Christmas morning, so maybe they were made by the elves in Santa's workshop.

當我?guī)е业男轮Z基亞手機, 邁著輕快的步伐去上高中時, 我以為它是我 老舊粉紅公主款對講機的 最新最酷的替代品。 然而現(xiàn)在,我和朋友不論在哪里, 都可以互相發(fā)信息或者對話, 而不再需要像 在后院里東奔西跑時 那樣假裝互相對話。坦白說, 在那個時候,我并沒有想過太多 這些裝置是如何制造出來的。 它們就像在圣誕節(jié)的早晨突然出現(xiàn), 所以也許是被圣誕老人 手工店的小精靈做出來的。

00:44

Let me ask you a question. Who do you think the real elves that make these devices are? If I ask a lot of the people I know, they would say it's the hoodie-wearing software engineers in Silicon Valley, hacking away at code. But a lot has to happen to these devices before they're ready for any kind of code. These devices start at the atomic level. So if you ask me, the real elves are the chemists. That's right, I said the chemists. Chemistry is the hero of electronic communications. And my goal today is to convince you to agree with me.

我想問你們一個問題。 你們認為誰是真正 制造這些設備的小精靈? 如果我問一些我認識的人, 他們會說是硅谷里面那些 穿著連帽衫編輯代碼 的軟件工程師。 但是在這些設備進行 任何代碼編輯前, 它們已經經過了大量的準備工作。 這些設備的誕生是從原子級別開始的。 所以如果你問我這個問題, 我會說,那些真正 的小精靈是化學家們。 是的,我說的是化學家們?;瘜W是電子通訊技術的幕后英雄。 我今天的目的就是說服你們 贊同我的觀點。

01:25

OK, let's start simple, and take a look inside these insanely addictive devices. Because without chemistry, what is an information superhighway that we love, would just be a really expensive, shiny paperweight. Chemistry enables all of these layers. Let's start at the display. How do you think we get those bright, vivid colors that we love so much? Well, I'll tell you. There's organic polymers embedded within the display, that can take electricity and turn it into the blue, red and green that we enjoy in our pictures.

讓我們從簡單一點的開始, 從內部來看看 這些令人癡迷的設備。 因為沒有化學, 我們所喜愛的這個信息高速公路, 將會只是一個非常昂貴的、 閃亮的壓紙器。 化學使每一層材料能夠發(fā)揮作用。 讓我們從顯示層開始。 你們認為我們是如何得到這些 令人愛不釋手的明亮生動的顏色的? 事實上, 嵌入在顯示層中的有機聚合物, 能夠把電流變成我們在圖片中看到的 令人賞心悅目的藍色、紅色和綠色。

02:04

What if we move down to the battery? Now there's some intense research. How do we take the chemical principles of traditional batteries and pair it with new, high surface area electrodes, so we can pack more charge in a smaller footprint of space, so that we could power our devices all day long, while we're taking selfies, without having to recharge our batteries or sit tethered to an electrical outlet?

那么電池層呢? 目前有一些密集的研究。 我們如何將傳統(tǒng)電池的化學原理 與新興的、高表面積電極相結合, 使得我們能夠將更多的電荷 放進一個更小的空間, 這樣當我們自拍時, 設備可以續(xù)航一整天, 不必再去給電池重新充電, 或者在一個插座附近坐著。

02:30

What if we go to the adhesives that bind it all together, so that it could withstand our frequent usage? After all, as a millennial, I have to take my phone out at least 200 times a day to check it, and in the process, drop it two to three times.

再看看把這些全都 緊緊固定在一起的粘合劑, 它經得起我們的頻繁使用嗎? 畢竟,作為千禧一代, 我不得不每天 把手機拿出來檢查 200 次, 并且在這個過程中摔了兩到三次。

02:48

But what are the real brains of these devices? What makes them work the way that we love them so much? Well that all has to do with electrical components and circuitry that are tethered to a printed circuit board. Or maybe you prefer a biological metaphor -- the motherboard, you might have heard of that. Now, the printed circuit board doesn't really get talked about a lot. And I'll be honest, I don't know why that is. Maybe it's because it's the least sexy layer and it's hidden beneath all of those other sleek-looking layers. But it's time to finally give this Clark Kent layer the Superman-worthy praise it deserves.

但是什么才是 這些設備真正的大腦? 為什么我們對它們愛不釋手? 這些都和電子組件, 以及圍繞在一個印刷電路板 周圍的電子線路有關。 或者也許你更喜歡生物學隱喻—— 你應該聽說過的,主板。 圍繞印刷電路板, 并沒有太多真正的討論。 坦白講,我不知道這是為什么。 可能是因為它是最不吸引人的一層, 并且它隱藏在其它所有 設計流暢的應用層下面。 但是現(xiàn)在是時候給予這 名不見經傳的一層 超人般的贊譽了。

03:25

And so I ask you a question. What do you think a printed circuit board is? Well, consider a metaphor. Think about the city that you live in. You have all these points of interest that you want to get to: your home, your work, restaurants, a couple of Starbucks on every block. And so we build roads that connect them all together. That's what a printed circuit board is. Except, instead of having things like restaurants, we have transistors on chips, capacitors, resistors, all of these electrical components that need to find a way to talk to each other. And so what are our roads? Well, we build tiny copper wires.

所以我想問你們一個問題。 你們認為什么是印刷電路板? 考慮用隱喻的方式。 想想你居住的城市。 你知道所有的景點,然后你想去: 你家里,你工作單位,餐廳, 以及每個街區(qū)的星巴克。 所以我們修了 將它們都連接起來的路。 這就是印刷電路板。 除了那些類似餐廳的東西, 我們在芯片上用晶體管, 電容器,電阻器替代了它們, 所有這些電子元件, 都需要可以相互通話的方式。 那么我們的道路呢? 我們造了微小的銅線。

04:12

So the next question is, how do we make these tiny copper wires? They're really small. Could it be that we go to the hardware store, pick up a spool of copper wire, get some wire cutters, a little clip-clip, saw it all up and then, bam -- we have our printed circuit board? No way. These wires are way too small for that. And so we have to rely on our friend: chemistry.

所以下一個問題是, 我們如何制造這些微小銅線? 它們非常的小。 可不可能,我們走進一家硬件商店, 拿一軸銅線, 再用那些鋼絲鉗,一點線纜, 把它們組裝起來,然后,砰—— 我們就有了印刷線路板嗎? 沒門。 我們需要的銅線是非常微小的。 所以我們不得不 依靠我們的朋友:化學。

04:38

Now, the chemical process to make these tiny copper wires is seemingly simple. We start with a solution of positively charged copper spheres. We then add to it an insulating printed circuit board. And we feed those positively charged spheres negatively charged electrons by adding formaldehyde to the mix. So you might remember formaldehyde. Really distinct odor, used to preserve frogs in biology class. Well it turns out it can do a lot more than just that. And it's a really key component to making these tiny copper wires. You see, the electrons on formaldehyde have a drive. They want to jump over to those positively charged copper spheres. And that's all because of a process known as redox chemistry. And when that happens, we can take these positively charged copper spheres and turn them into bright, shiny, metallic and conductive copper. And once we have conductive copper, now we're cooking with gas. And we can get all of those electrical components to talk to each other. So thank you once again to chemistry.

化學工藝使制造這些微小銅線 看起來似乎非常簡單。 我們從一個帶正電的銅球的 溶液開始。 然后我們加入一個 絕緣的印刷電路板。 同時我們通過往混合液里加入甲醛 給帶正電的球體里 提供帶負電的電子。 你可能還記得甲醛是什么。 非常獨特的氣味, 用來在生物課上保存青蛙。 是的,事實證明它可以用來 做更多的事情。 并且這是制造這些微小銅線的 關鍵部分。 于是,這些甲醛上 的電子有了內驅力。 它們想跳上這些帶正電的銅球。 這些都是因為一個叫 氧化還原的過程。 當這個反應發(fā)生的時候, 我們可以將這些帶正電的銅球 變成明亮的, 閃光的,金屬的,有傳導性的銅。 一旦我們有了帶傳導性的銅, 就相當于我們已經 在用天然氣做飯了。 那么,我們能夠使所有電子元件 互相之間進行交流了。 所以再次謝謝化學。

05:51

And let's take a thought and think about how far we've come with chemistry. Clearly, in electronic communications, size matters. So let's think about how we can shrink down our devices, so that we can go from our 1990s Zack Morris cell phone to something a little bit more sleek, like the phones of today that can fit in our pockets. Although, let's be real here: absolutely nothing can fit into ladies' pants pockets, if you can find a pair of pants that has pockets.

讓我們來想想, 思考一下有了化學以后 我們走了多遠。 很明顯,在電子通訊領域, 尺寸非常重要。 所以讓我們思考一下 如何才能縮小設備的尺寸, 這樣我們可以從 90 年代的大哥大, 過渡到一種更加流暢的, 就像今天我們可以 裝進口袋里的手機。 盡管,現(xiàn)實一點: 很顯然沒有東西可以 裝進女士褲子的口袋里, 如果你可以找到一對有口袋的褲子。

06:22

(Laughter)

(笑聲)

06:23

And I don't think chemistry can help us with that problem. But more important than shrinking the actual device, how do we shrink the circuitry inside of it, and shrink it by 100 times, so that we can take the circuitry from the micron scale all the way down to the nanometer scale? Because, let's face it, right now we all want more powerful and faster phones. Well, more power and faster requires more circuitry.

并且我也不認為化學 可以幫我們解決這個問題。 但是比讓實際設備 縮小尺寸更重要的是, 我們如何使內部的電路 縮小 100 倍, 以便使電路從微米尺寸 直接縮小到納米尺寸? 因為,我們面對的是, 現(xiàn)在我們需要更強大,更快的手機, 而更強大和更快意味著 需要更多的電路。

06:53

So how do we do this? It's not like we have some magic electromagnetic shrink ray, like professor Wayne Szalinski used in "Honey, I Shrunk the Kids" to shrink his children. On accident, of course. Or do we? Well, actually, in the field, there's a process that's pretty similar to that. And it's name is photolithography. In photolithography, we take electromagnetic radiation, or what we tend to call light, and we use it to shrink down some of that circuitry, so that we could cram more of it into a really small space.

那么我們如何做到這一點? 并不是說我們擁有某些 有魔力的電磁收縮射線, 就像韋恩·薩林斯基教授在 “親愛的,我把孩子們縮小了”里面 用來縮小他的孩子們的機器。 當然,他不是故意的。 我們可以用他的機器嗎? 事實上,在該領域內, 有一個過程和那個非常類似。 它的名字叫光刻法。 在光刻法里,我們使用電磁輻射, 或者,我們更傾向于叫光, 我們用它來縮小電路的一些部分, 這樣我們可以在一個非常小的 空間里塞進更多的電路。

07:29

Now, how does this work? Well, we start with a substrate that has a light-sensitive film on it. We then cover it with a mask that has a pattern on top of it of fine lines and features that are going to make the phone work the way that we want it to. We then expose a bright light and shine it through this mask, which creates a shadow of that pattern on the surface. Now, anywhere that the light can get through the mask, it's going to cause a chemical reaction to occur. And that's going to burn the image of that pattern into the substrate.

那么,這是如何運作的呢? 我們從一個有一層 感光膜覆蓋的基底開始。 然后我們用一張膜把它蓋住, 膜上面有一些 用來定制手機功能的 細線和特性的圖案。 接著我們讓基底暴露在 一束明亮的光下, 在表面上留下一個陰影的圖案。 任何光透過的地方, 都將會引起一個化學反應。 并且會將圖案的圖像烙進基底里。

08:04

So the question you're probably asking is, how do we go from a burned image to clean fine lines and features? And for that, we have to use a chemical solution called the developer. Now the developer is special. What it can do is take all of the nonexposed areas and remove them selectively, leaving behind clean fine lines and features, and making our miniaturized devices work.

所以你可能想問一個問題, 我們如何從一個燒出來的圖像 得到干凈的線條和特征? 要實現(xiàn)這個目的, 我們必須使用一種 叫顯影劑的化學溶液。 這種顯影劑比較特別。 它的作用是將沒有曝光的區(qū)域 有選擇性的去除掉, 留下干凈的線條和特征, 讓我們的小型設備正常工作。

08:30

So, we've used chemistry now to build up our devices, and we've used it to shrink down our devices. So I've probably convinced you that chemistry is the true hero, and we could wrap it up there.

所以,現(xiàn)在我們已經使用 化學打造出了我們的設備, 也用它縮小了我們的設備。 所以我可能已經說服了你們, 化學才是真正的英雄, 那我們就可以到這里結束了。

08:42

(Applause)

(掌聲)

08:43

Hold on, we're not done. Not so fast. Because we're all human. And as a human, I always want more. And so now I want to think about how to use chemistry to extract more out of a device.

等一下,還沒有。 沒這么快。 因為我們都是人類。 作為一個人類,我總是想要更多。 所以現(xiàn)在我想思考如何使用化學 從一個設備中提取出更多的東西。

08:57

Right now, we're being told that we want something called 5G, or the promised fifth generation of wireless. Now, you might have heard of 5G in commercials that are starting to appear. Or maybe some of you even experienced it in the 2018 winter Olympics. What I'm most excited about for 5G is that, when I'm late, running out of the house to catch a plane, I can download movies onto my device in 40 seconds as opposed to 40 minutes. But once true 5G is here, it's going to be a lot more than how many movies we can put on our device.

現(xiàn)在,我們知道了我們想造 5G, 或者說承諾的第五代無線技術。 你應該已經在商業(yè)領域聽說過, 5G 已經開始出現(xiàn)了。 或者你們中的一些人也許已經在 2018 年冬奧會體驗過了。 5G 最使我興奮的是, 當我遲到了,沖出家門去趕飛機, 我可以用 40 秒 下載電影到我的手機上, 而不是 40 分鐘。 但是一旦 5G 真的來了, 比起我們可以 放多少部電影在手機里, 它實際上有更深遠的意義。

09:34

So the question is, why is true 5G not here? And I'll let you in on a little secret. It's pretty easy to answer. It's just plain hard to do. You see, if you use those traditional materials and copper to build 5G devices, the signal can't make it to its final destination.

那么問題來了, 為什么真正的 5G 還沒來? 我想與你們分享一個小秘密。 這個問題很好回答。 只是因為太難了。 想想看,如果你用 那些傳統(tǒng)的材料和銅 來制造 5G 設備, 信號并不能到達它的終點。

09:55

Traditionally, we use really rough insulating layers to support copper wires. Think about Velcro fasteners. It's the roughness of the two pieces that make them stick together. That's pretty important if you want to have a device that's going to last longer than it takes you to rip it out of the box and start installing all of your apps on it.

傳統(tǒng)上,我們用非常粗糙的絕緣層 來使銅線發(fā)揮作用。 想象一下尼龍搭扣。 是粗糙度讓兩片東西能相互粘牢。 如果你想要一個設備, 它的續(xù)航的時間 比你把它從盒子里拿出來, 并開始安裝所有 的應用程序要長的話, 這一點就非常重要。

10:19

But this roughness causes a problem. You see, at the high speeds for 5G the signal has to travel close to that roughness. And it makes it get lost before it reaches its final destination. Think about a mountain range. And you have a complex system of roads that goes up and over it, and you're trying to get to the other side. Don't you agree with me that it would probably take a really long time, and you would probably get lost, if you had to go up and down all of the mountains, as opposed to if you just drilled a flat tunnel that could go straight on through? Well it's the same thing in our 5G devices. If we could remove this roughness, then we can send the 5G signal straight on through uninterrupted. Sounds pretty good, right?

但是這種粗糙度引起了一個問題。 在 5G 的高速下, 信號不得不靠近粗糙面?zhèn)鬏敗?那么在到達終點前它就會損失殆盡。 想象一個山脈, 環(huán)繞著一條錯綜復雜的道路系統(tǒng), 你試圖到達山的那一邊。 那么你們同不同意, 跟挖一條筆直的隧道, 直接穿過山脈相比, 翻山越嶺 要花上很長時間, 而且還可能會迷路? 這就是 5G 設備所面臨的問題。 如果我們可以去掉這個粗糙面, 就可以讓 5G 信號 筆直穿過媒介而不受干擾。 聽起來不錯,是吧?

11:07

But hold on. Didn't I just tell you that we needed that roughness to keep the device together? And if we remove it, we're in a situation where now the copper isn't going to stick to that underlying substrate. Think about building a house of Lego blocks, with all of the nooks and crannies that latch together, as opposed to smooth building blocks. Which of the two is going to have more structural integrity when the two-year-old comes ripping through the living room, trying to play Godzilla and knock everything down? But what if we put glue on those smooth blocks? And that's what the industry is waiting for. They're waiting for the chemists to design new, smooth surfaces with increased inherent adhesion for some of those copper wires.

但是等一下。 我有沒有告訴你們, 我們需要那個粗糙面 來保持設備相互連接? 如果我們去掉了這部分, 就無法將銅固定在 下面的基底上。 想象用樂高積木搭建一個房子, 相比于光滑的積木塊, 樂高積木的所有邊邊角角 都是嵌合在一起的。 當兩歲的小孩闖進客廳, 試圖扮演哥斯拉, 并且把所有東西都拆掉, 這兩個中哪一個的結構 會更穩(wěn)固呢? 但是如果我們 在光滑的積木塊上用膠水呢? 這就是行業(yè)目前在等待的東西。 他們在等化學家們?yōu)槟承┿~線設計出 增加了固有粘著力的 新的、光滑的表面。

11:54

And when we solve this problem, and we will solve the problem, and we'll work with physicists and engineers to solve all of the challenges of 5G, well then the number of applications is going to skyrocket. So yeah, we'll have things like self-driving cars, because now our data networks can handle the speeds and the amount of information required to make that work. But let's start to use imagination. I can imagine going into a restaurant with a friend that has a peanut allergy, taking out my phone, waving it over the food and having the food tell us a really important answer to a question -- deadly or safe to consume? Or maybe our devices will get so good at processing information about us, that they'll become like our personal trainers. And they'll know the most efficient way for us to burn calories. I know come November, when I'm trying to burn off some of these pregnancy pounds, I would love a device that could tell me how to do that.

當我們解決了這個問題—— 我們一定會解決這個問題—— 然后我們會跟物理學家 和工程師一起合作, 解決 5G 的所有挑戰(zhàn), 然后應用程序的數(shù)量 就會呈爆發(fā)性增長。 是的,我們將會有像 自動駕駛汽車一樣的應用, 因為現(xiàn)在我們的數(shù)據(jù)網絡 可以應對這個速度, 并且信息的數(shù)量也 需要使它達到這個速度。 但是,再讓我們來想象一下。 比如,我和一個對花生 過敏的朋友走進一家餐廳, 拿出我的手機, 對著食物晃一下, 然后讓食物來幫助我們 回答一個非常重要的問題—— 這個食物是致命的還是安全的? 或者我們的設備能夠 非常好的處理這些信息, 這樣它們就成為了我們的個人助理, 能夠了解對于我們 燃燒卡路里最有效的方式。 我知道到了十一月, 當我試圖減掉一部分 因為懷孕長胖的體重, 我會很高興有一個設備 可以告訴我該怎么做。

12:56

I really don't know another way of saying it, except chemistry is just cool. And it enables all of these electronic devices. So the next time you send a text or take a selfie, think about all those atoms that are hard at work and the innovation that came before them. Who knows, maybe even some of you listening to this talk, perhaps even on your mobile device, will decide that you too want to play sidekick to Captain Chemistry, the true hero of electronic devices.

除了說,化學真的太酷了, 我不知道還有什么別的方式 來形容它的神奇。 它使這些所有 的電子設備成為了可能。 所以下一次當你發(fā)信息 或者自拍的時候, 想一想所有努力工作的原子, 和在它們之前的革新。 誰知道呢, 也許你們當中的一些人, 甚至通過移動設備, 也會決定要協(xié)助 電子設備真正的英雄, 化學隊長, 貢獻自己的一份力量。

13:28

Thank you for your attention, and thank you chemistry.

謝謝大家的聆聽, 謝謝化學。

13:31

(Applause)

(鼓掌)

用戶搜索

瘋狂英語 英語語法 新概念英語 走遍美國 四級聽力 英語音標 英語入門 發(fā)音 美語 四級 新東方 七年級 賴世雄 zero是什么意思成都市SG珊頓道英語學習交流群

  • 頻道推薦
  • |
  • 全站推薦
  • 推薦下載
  • 網站推薦